
Context dependency in biodiversity patterns of central
German stream metacommunities

JONATHAN D. TONKIN* ¶ , JANI HEINO† , ANDREA SUNDERMANN*, PETER HAASE*‡a AND

SONJA C. J €AHNIG§a

*Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen,

Germany
†Finnish Environment Institute, Natural Environment Centre, Biodiversity, Oulu, Finland
‡Department of River and Floodplain Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
§Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany

SUMMARY

1. Context dependency is an emerging topic that is challenging our understanding of the factors

shaping biodiversity in metacommunities. River networks and other dendritic systems provide

unique systems for examining variation in the processes shaping biodiversity between different

metacommunities.

2. We examined biodiversity patterns in five benthic invertebrate data sets, from two catchments in

central Germany, with the aim of exploring context dependency in these systems. We used variance

partitioning to disentangle the variation explained in three biodiversity metrics: taxonomic richness,

Simpson’s diversity and local contribution to beta diversity (LCBD; a measure of the uniqueness of a

site). As explanatory variables, we used proxies of network position (i.e. catchment size and altitude)

and habitat conditions.

3. Contrary to our expectation, we found no evidence of a decline in LCBD downstream in our

study. Local habitat conditions and catchment land use played a much stronger role than catchment

size and altitude in explaining variation in the three biodiversity metrics. Observed patterns were

highly variable between different data sets in our study. These findings suggest that factors shaping

biodiversity patterns in these systems are highly context dependent and less related to their position

along the river network than local habitat conditions.

4. Given the clear context dependency between data sets, we urge researchers to focus on

disentangling the factors driving the high levels of variability between individual systems through

the study of a number of replicate, rather than single, metacommunities.

Keywords: benthic invertebrates, beta diversity, local contribution to beta diversity, river network, variance
partitioning

Introduction

While clearly linked, the alpha, beta and gamma compo-

nents of biodiversity (Whittaker, 1960) can be shaped by

a different suite of processes operating at different scales

(Angeler & Drakare, 2013). The metacommunity concept

(Leibold et al., 2004; Holyoak, Leibold & Holt, 2005), by

emphasising the importance of processes operating

beyond the local scale, led to a rapid advancement in

both our understanding of and the analytical tools used

to examine spatial patterns in biodiversity. Disentan-

gling metacommunity patterns and underlying processes

requires an understanding of not only local environmen-

tal influences (i.e. species sorting), but also spatial pro-

cesses such as dispersal (Holyoak et al., 2005). Given the

strong ties between the theoretical foundations of meta-
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community ecology and the drivers of beta diversity,

understanding beta diversity patterns also necessitates

hypotheses developed in the context of metacommunity

theory (Heino, Melo & Bini, 2015a).

Metacommunity organisation remains difficult to pre-

dict, with various processes operating fleetingly and act-

ing differently on different subsets of organisms (Driscoll

& Lindenmayer, 2009). Community ecology in general is

riddled with contingency so complex that general repeat-

able patterns are rare (Lawton, 1999). Contingency is the

most problematic in this middle ground between low

levels of ecological organisation (e.g. populations), and

higher levels at greater spatial and temporal scales (e.g.

macroecology) where generalisations are more readily

available (Lawton, 1999). Beyond communities, factors

governing metacommunities can, therefore, be highly

context dependent between regions (Driscoll & Linden-

mayer, 2009; Heino et al., 2012). As with community ecol-

ogy in general (Lawton, 1999), context dependency in

metacommunity structuring may emerge through differ-

ences in the characteristics of different organisms. For

instance, there are often differences between different

trait modalities, such as dispersal modes (Thompson &

Townsend, 2006; Canedo-Arguelles et al., 2015; Tonkin

et al., 2015b), or in the characteristics of the environmen-

tal setting (Heino et al., 2015d). Such context dependency

can lead to differences in the importance of environmen-

tal or spatial factors on metacommunities within differ-

ent regions (Heino et al., 2012). Among others, such as

floodplain lake fish communities (Fernandes et al., 2013),

one particular system shown to exhibit strongly context-

dependent patterns is the running water system, where

different patterns typically emerge between different

catchments, studies, locations and years (Er}os et al., 2013;

Heino et al., 2015b Heino et al., 2015e).

Metacommunity studies have been biased towards

systems with discrete habitat boundaries (Logue et al.,

2011). However, streams and rivers are ideal systems for

testing metacommunity concepts and beta diversity pat-

terns, due to their isolated position embedded within

the terrestrial landscape and owing to their hierarchical

dendritic organisation (Campbell Grant, Lowe & Fagan,

2007; Altermatt, 2013), variety of habitat types and dis-

proportionately high biodiversity (Vinson & Hawkins,

1998; V€or€osmarty et al., 2010). This organisation and uni-

directional flow can have strong implications on the way

in which organisms disperse, dictating metacommunity

dynamics and subsequently the organisation of biodiver-

sity (Campbell Grant et al., 2007; Brown & Swan, 2010;

Altermatt, 2013; Swan & Brown, 2014). Contrary to pre-

vious views, such as the River Continuum Concept

(Vannote et al., 1980), headwaters are now understood to

harbour much of the catchment-wide biodiversity in

river systems (Finn et al., 2011; Besemer et al., 2013),

although alpha diversity should be promoted in sites

more central within catchments (Altermatt, Seymour &

Martinez, 2013). Higher beta diversity in headwaters

may result from their spatial isolation and thus limited

dispersal rates (Brown & Swan, 2010; Finn et al., 2011),

considerable environmental heterogeneity between

streams (Clarke et al., 2008), a potentially higher level

of specialisation compared to downstream sections

(Hughes, Schmidt & Finn, 2009) and their numerical

dominance over downstream sections due to the den-

dritic organisation (Benda et al., 2004). Accordingly, a

reasonable expectation is to observe an increase in alpha

diversity and decline in beta diversity moving down-

stream in moderately sized-river systems (Finn et al.,

2011).

Greater beta diversity in headwaters suggests that each

stream contributes a larger proportion to both overall beta

diversity and gamma diversity compared to other sec-

tions. In fact, the local environmental (e.g. niche-related

processes) versus regional (e.g. dispersal-related pro-

cesses) control is likely to differ between different loca-

tions in the river network (Brown & Swan, 2010).

Therefore, in this study, we applied techniques to disen-

tangle the local contribution to beta diversity (LCBD), a

measure of the uniqueness of individual sites within a

metacommunity (Legendre & De C�aceres, 2013), in rela-

tion to their position within the river network. Given the

indication of strong context dependency in metacommu-

nity patterns, it is important to explore these issues across

multiple environmental settings (see Heino et al., 2015b).

Thus, we focused on five separate benthic invertebrate

data sets spread between 3 years and two separate catch-

ments with similar spatial extents. Benthic invertebrates

contribute significantly to the biodiversity of streams

(Strayer, 2006) and have a central position in the function-

ing of these ecosystems (Allan & Castillo, 2007), making

them ideal focal organisms to test metacommunity con-

cepts and biodiversity patterns.

We tested the following hypotheses: H1. Alpha diver-

sity increases downstream with increasing catchment

size and with decreasing altitude, but LCBD decreases

simultaneously. This is based on the notion that head-

water sites are more isolated and more physically vari-

able than downstream sites, leading to more unique

assemblages within the catchment (higher LCBD), but

also have lower local richness (Finn et al., 2011). H2.

Due to the largely non-pristine nature of our central

German study region and impaired regional species
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pools (Tonkin et al., 2014), environmental variables (a

combination of habitat and catchment land use) are

more important in explaining biodiversity than the

physical position within the network. More specifically,

we expect H1 to hold, but network position to exert a

weaker influence than environmental variables. We also

examined whether biodiversity patterns and environ-

mental predictors were consistent or variable between

the different data sets, owing to context dependency, as

has been observed regularly in examinations of stream

metacommunities (Heino et al., 2012, 2015b,e). Consistent

patterns between the five data sets would indicate simi-

larity in processes shaping these stream metacommuni-

ties, whereas different patterns would indicate a certain

level of context dependency between data sets (i.e. dif-

ferent factors may drive biodiversity patterns in differ-

ent environmental settings). To test these hypotheses,

we partitioned the variation in our response variables

between catchment size (as a direct proxy for position

along the river network; larger streams are further

downstream), altitude (indirectly related to network

position) and selected environmental variables for pre-

dicting stream macroinvertebrate biodiversity patterns.

Methods

Study sites

We collated benthic invertebrate community data from

124 low mountain streams and rivers in the central Ger-

man state of Hesse. These streams belong to the Central

Highlands ecoregion [stream types 5–9, and 19 (small

streams in riverine floodplains, independent of

ecoregion)] (Pottgiesser & Sommerh€auser, 2004, http://

wiki.reformrivers.eu/index.php/River_typology_in_Ger-

many). Sites were sampled between 2005 and 2007 and

each site was sampled once during this period.

Precipitation fluctuated over this period, but there were

no major differences between the 3 years (source:

NOAA – National Oceanic and Atmospheric Adminis-

tration; http://www.ncdc.noaa.gov/; Station: GHCND:

GMW00035032 – RHEIN MAIN, GM).

For this study, we delineated two catchments, a north-

ern and southern: the Weser River to the North and the

Main River to the South. To adequately examine meta-

community dynamics, it is important to limit metacom-

munities to those that can interact through dispersal and

thus to consider individual years separately (Heino et al.,

2015b). Therefore, we divided these two catchments into

different years as individual metacommunities. To ensure

adequate replication, we employed a criterion of a mini-

mum of 15 sites per catchment per year to be included in

the analysis. The statistical models we employed can bet-

ter be trusted if they are based on a moderate number of

sites. This resulted in five replicate data sets, two from the

northern catchment (2005, 2007) and three from the south-

ern (2005–2007), with a final number of 124 sites (North:

data set a – 18, b – 27; South: c – 28, d – 28, e – 23; Fig. 1).

We hereafter refer to these as data sets, rather than catch-

ments as, while each site was only considered once, only

two broad catchments are included, with temporal repli-

cates. Nevertheless, these datasets represent five different

replicate metacommunities, given that no individual sites

were replicated over the 3 years (i.e. each site was only

sampled once over the 3-year period).

We removed all sites with catchment sizes greater

than 300 km2 as these few sites can bias the patterns

observed. Thus, catchment sizes ranged between 7 and

280 km2, with a mean of 64 km2 (see Table S1 in Sup-

porting Information). Mean site altitude was 167 m a.s.l.,

ranging between 84 and 379 m a.s.l. Both catchment size

(one-way ANOVA: F4,119 = 7.09, P < 0.0001) and altitude

(F4,119 = 22.58, P < 0.0001) differed significantly between

the five data sets. Sites in the two northern data sets (the

same general region but sampled in different years and

different individual sites) were at higher altitude than

those in the southern data sets (Tukey’s HSD P < 0.05

between all data sets of northern and all southern

basins, but not within the basins). Catchment size differ-

ences were less clear, however, with data sets D and E

having greater catchment sizes than data set C, and data

set E greater than A (Tukey’s HSD P < 0.05).

Sampling

Benthic invertebrates were sampled by German govern-

mental environmental agencies following the official EU

Water Framework Directive (WFD) compliant sampling

protocols for German streams (Haase et al., 2004). This

sampling method uses a multi-habitat approach by tak-

ing 20 sample units from each site, based on the propor-

tion of microhabitats present at a site. More specifically,

all microhabitats in a 100-m long reach were first

recorded in 5% coverage units based on visual assess-

ments, and each sampling unit (25 9 25 cm) sampled

with a 0.5-mm mesh kick net. Twenty sample units were

taken from each site and then pooled for later analysis

(1.25 m2 total sampling area). These microhabitat values

were recorded for use in subsequent analyses and can

be found in Table S2. They consisted of substratum com-

position of various sizes, algal cover, coarse particulate

organic matter, macrophytes (submerged and emergent),
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woody and non-woody debris, terrestrial plants and

decaying material (Table S2). Collected samples were

stored in 70% ethanol and identified in the laboratory to

consistent levels between sites, as proposed by Haase,

Sundermann & Schindeh€utte (2006) (i.e. EU-WFD-com-

pliant operational taxon list for German running waters).

To partially control for major anthropogenic stressors,

we removed heavily polluted sites using the German

saprobity index (Rolauffs et al., 2004). We thus removed

all sites with worse than ‘medium’ saprobity scores.

Environmental variables

In addition to the microhabitat variables (see Table S2),

catchment land use was calculated for the entire

upstream catchment area of each site using data from

the CORINE Land Cover database (Bossard, Feranec &

Otahel, 2000). We grouped CORINE classes into seven

coarser classes (artificial, agriculture, forest, shrub, natu-

ral bare, wetlands, water), but due to low percent cover-

age of some classes, only artificial, agriculture, forest

and shrub were kept for our analyses. These were used

as explanatory variables in the analyses.

Data analysis

Differences in environmental conditions. To test the null

hypothesis that there was no difference in the degree of

environmental heterogeneity between the five data sets,

we tested for homogeneity of group dispersions (PERM-

DISP2) (Anderson, 2006) using the ‘betadisper’ function

in the R package vegan (Oksanen et al., 2013). This

method uses the ANOVA F-statistic to compare the

within-group distances to each group centroid, and tests

for significance between groups using permutation. We

tested for differences using normalised environmental

variables and Euclidean distances. Where significant, we

compared between individual data sets using pairwise

Tukey’s HSD tests. We ran these tests, both inclusive

and exclusive of catchment size and altitude, in order to

observe their influence.

As beta diversity should increase with increasing spa-

tial extent (Bini et al., 2014; Heino et al., 2015a), we also

assessed whether there were any differences in the spa-

tial extent of each data set using the same approach on

geographical coordinates and found no differences

(F4,119 = 1.09, P = 0.364).

Differences in biodiversity. Multiple approaches to mea-

sure beta diversity are often required, depending on the

question of interest, as different measures describe dis-

tinct aspects of beta diversity (Anderson et al., 2011).

Accordingly, there is a plethora of methods now available

for its calculation, which can be largely broken down into

two broad categories: one measuring turnover and

another measuring overall variation (Anderson et al.,

2011). Turnover refers to the directional change in compo-

sition from one location to another in relation to some

form of gradient (e.g. environmental, spatial or temporal).

Variation in community composition, on the other hand,

does not consider a gradient of change, but simply the

overall variation in community composition between a

set of sites. Legendre & De C�aceres (2013) recently pro-

posed a highly adaptable method to quantify beta diver-

sity as the total variation in a species-by-site community

matrix, based on a variety of transformations and distance

measures. One benefit of this method is its ability to also

identify the local site-based contributions (LCBD) to over-
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Fig. 1 Map of the five data sets sampled between 2005 and 2007 in the central German state of Hesse. The five data sets comprise one

northern and one southern catchment (Weser and Main Rivers, respectively, sampled each year). Insufficient sites were sampled in 2006 in

the northern basin to be included.
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all beta diversity in a data set. LCBD allows, for instance,

identification of individual sites or areas that contribute

more or less than average to overall beta diversity. This,

in turn, enables the disentanglement of factors underlying

metacommunity (or regional) biodiversity patterns, but

also the ability to identify sites with high conservation

value (or restoration potential in the case of species poor

communities), those with invasive species or those with

unique environmental conditions (Legendre & De

C�aceres, 2013).

To calculate catchment-specific beta diversity measures,

we followed the methods developed by Legendre & De

C�aceres (2013). We examined overall (i.e. data set) beta

diversity (BD_Total) using the beta.div function, based on

the R code provided by Legendre & De C�aceres (2013). To

examine the uniqueness of individual assemblages for

testing our two hypotheses (H1 and H2), we calculated

local (i.e. individual site-based) contribution to beta diver-

sity (LCBD) using the same method. We based our

approach on Hellinger-transformed data (i.e. raw abun-

dance data, using the ‘hellinger’ method in ‘beta.div’), a

suitable method for handling heteroscedastic community

data for statistical methods with assumptions of linearity

(Legendre & Gallagher, 2001). Significance of individual

LCBD values was tested for using the permutation proce-

dure of Legendre & De C�aceres (2013).

To summarise differences between the biodiversity of

the five data sets, we compared local taxonomic richness,

Simpson’s diversity index, data set gamma diversity and

data set beta diversity (BD_Total). We calculated Simpson’s

diversity index (1 � D) using the ‘diversity’ function in the

R package vegan (Oksanen et al., 2013). We compared

mean taxonomic richness and Simpson’s diversity index

using one-way ANOVAs, followed by pairwise Tukey’s HSD

tests, when significant differences were observed. Gamma

diversity and BD_Total could not be compared statistically

as they only had one value per data set.

To test our first hypothesis (H1), linking catchment

size (as a proxy for network position) and altitude, and

taxonomic richness, Simpson’s diversity and LCBD, we

ran simple linear regressions, using log-transformed

catchment size and altitude.

To examine the extent of context dependency between

data sets and the importance of environmental variables

(H2), we partitioned the variation in our response vari-

ables between combined local habitat and catchment

land use (environmental), altitude and catchment size

separately for each data set. This allowed us to examine

whether the relative positioning of a community within

a river catchment (representative of regional processes)

or whether local environmental conditions (local pro-

cesses) were more important for structuring biodiversity.

As we were specifically interested in both catchment

size and altitude, we always forced them in the variance

partitioning approach. For the environmental variables,

we used forward selection of normalised variables to

select significant variables using the ‘ordistep’ procedure

in linear regression (i.e. with a single response variable)

in the vegan package (Oksanen et al., 2013). We set mod-

els to include variables with a P < 0.05 and subsequently

remove them with a P > 0.1, and we set the number of

permutations to the number required for each case with

respect to our defined P value.

We ran variance partitioning (Borcard, Legendre & Dra-

peau, 1992; Anderson & Gribble, 1998; Peres-Neto et al.,

2006) for each of the single response variables in each data

set, using the ‘varpart’ function in vegan. Given we mod-

elled single response variables, the partitioning was based

on partial linear regression (Oksanen et al., 2013). This

method partitions the variation between the pure effects

of each variable (i.e. catchment area or altitude), or group

of variables (i.e. local environmental variables) and the

shared variance explained. In this case, we had three inde-

pendent variable groups. This resulted in seven individ-

ual components of variation and unexplained variation.

All statistical analyses were carried out in R 3.1.1 (R

Core Team 2013).

Results

Congruence between data sets

Environmental heterogeneity differed between the five

data sets (between data set A and C specifically; Tukey’s

HSD P < 0.05), both with (F4,119 = 3.84, P = 0.006) and

without (F4,119 = 4.53, P = 0.001) catchment size and alti-

tude included (see Figure S1 in Supporting Information).

A total of 325 taxa was found across the five data sets.

Trichoptera was the most diverse order with 78 taxa, fol-

lowed by Diptera (52), Coleoptera (45), Ephemeroptera

(43), Plecoptera (18) and Gastropoda (17). Taxonomic

richness averaged 28 taxa per site and was lower in data

set C than A, but no pairwise differences were evident

between any other data sets (F4,119 = 3.94, P = 0.005; see

Figure S2 in Supporting Information). Simpson’s diver-

sity index averaged 0.81 at each site, but did not differ

between the five data sets (F4,119 = 2.19, P = 0.074; see

Figure S2). Catchment-level gamma diversity ranged

between 148 taxa in data set B to 184 in data set D, and

BD_Total between 0.51 in data set B to 0.67 in data sets

C and E (see Figure S2). Mean alpha diversity was low-

est (and gamma diversity second lowest behind data set
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B) and beta diversity highest in data set C, correspond-

ing with the highest environmental heterogeneity in this

data set (see Figure S1). LCBD averaged 0.04 � 0.001

(�1 SE) and was highest in data set A compared to the

other four data sets (F4,119 = 14.11, P < 0.0001; Tukey’s

HSD P < 0.05). Few LCBD points per catchment were

significant (Fig. 2).

Linkages between catchment size or altitude and the

three response variables were highly variable between

the five data sets (Fig. 2; Table 1). Likewise, forward-

selected environmental variables differed considerably

between the data sets and three biodiversity metrics,

although some of this variability resulted from inversely

correlated variables being selected, such as the different

land-use variables (Table 2). In fact, there were very few

selected variables shared between different data sets or

metrics. Finally, variance partitioning showed a high

level of variability between the different data sets and

biodiversity metrics (Fig. 3).

Effects of network position

Catchment size was rarely important for predicting bio-

diversity, with only one identified relationship with rich-

ness or LCBD and none for Simpson’s index (Fig. 2;

Table 1). The significant relationships exhibited increases

with increasing catchment size (Fig. 2; Table 1). Altitude

was more often linked with the indices. Richness

increased with altitude in three of the five data sets,

Simpson’s index in two and LCBD index in one.

Combined relative effects of network position and

environmental variables

Of the forward-selected environmental variables, land-

use variables were often selected, but these differed

between data sets and included agriculture, forest, shrub

and artificial landforms. In the variance partitioning

framework, environmental variables regularly explained

a much higher proportion of the variability than

catchment size or altitude for all biodiversity metrics.

The pure effect of the environment ranged from 2 to

68% for richness, 23 to 43% for Simpson’s index and 13

to 55% for LCBD. Richness tended to have the highest

variance explained (Adj. R2: mean = 0.65, min = 0.39,

max = 0.84), followed by Simpson’s index (Adj. R2:

mean = 0.40, min = 0.21, max = 0.64) and LCBD index

(Adj. R2: mean = 0.36, min = 0.23, max = 0.54). How-
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Fig. 2 Taxonomic richness, Simpson’s diversity and local contribution to beta diversity (LCBD) as a function of log-transformed catchment

size and altitude, across five data sets from two catchments in central Germany, sampled between 2005 and 2007. Significant relationships

are shown with filled circles and plotted linear regression lines. In the LCBD sub-plot significant LCBD values at P = 0.05 are larger. Full

regression results can be found in Table 1.
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ever, there was considerable variability in the adjusted

R2 between data sets for each metric (Fig. 3).

This variability was reflected in the individual varia-

tion partitions. For instance, the pure effect of catchment

size was unimportant in most data sets (mostly 0%

explained). However, pure catchment size explained

25% for richness in data set B and combined with the

shared influence of environmental variables, this was

increased to 34%. The pure effect of altitude more regu-

larly explained a substantial proportion of variation in

all metrics, but was also highly variable (0–35% for rich-

ness, 0–17% for Simpson’s index and 0–7% for LCBD).

Discussion

Congruence between data sets

We examined patterns of biodiversity in stream macroin-

vertebrate communities in relation to key environmental

gradients in central Germany. Our five data sets (two

catchments and 3 years with non-overlapping study sites)

showed considerable variability in the amount of variance

explained, the importance of catchment size or altitude

for local taxonomic richness, diversity and LCBD, and the

effects of environmental variables selected for variance

partitioning. These differences did not reflect differences

in environmental heterogeneity between the data sets,

although mean alpha and overall beta were somewhat

aligned with environmental heterogeneity. Moreover,

there were no clear differences in precipitation between

the years, which might have influenced the results.

The mechanisms with which metacommunities are

governed can be highly variable and may operate inter-

mittently (Driscoll & Lindenmayer, 2009; Eros et al.,

2012; Fernandes et al., 2013). Therefore, we hypothesised

that there would be strong context dependency in the

observed patterns, not least because the structuring of

stream metacommunities in particular can be highly

context dependent between different catchments (Heino

et al., 2012). Not only are there differences between

Table 1 Results from regressions between log-transformed catchment size and altitude and the three macroinvertebrate community metrics:

taxonomic richness, Simpson’s diversity index (1 � D) and local contribution to beta diversity (LCBD). Significant P values are marked in

bold. d.f., degrees of freedom.

Independent Metric Catchment d.f. Intercept Slope F R2 P

Catchment size Richness A 16 47.64 �3.90 0.90 0.053 0.3558

Catchment size Simpson’s A 16 0.88 0.00 0.02 0.002 0.877

Catchment size LCBD A 16 0.06 0.00 0.11 0.007 0.744

Catchment size Richness B 25 13.92 4.06 10.22 0.290 0.0037

Catchment size Simpson’s B 25 0.79 0.01 0.24 0.010 0.6257

Catchment size LCBD B 25 0.04 0.00 0.09 0.004 0.7629

Catchment size Richness C 26 26.66 �1.54 0.67 0.025 0.4193

Catchment size Simpson’s C 26 0.76 0.00 0.01 0.000 0.9352

Catchment size LCBD C 26 0.04 0.00 0.00 0.000 0.9448

Catchment size Richness D 26 15.75 2.94 1.34 0.049 0.2572

Catchment size Simpson’s D 26 0.83 0.00 0.02 0.001 0.8759

Catchment size LCBD D 26 0.01 0.01 10.91 0.296 0.0028

Catchment size Richness E 21 25.55 0.48 0.04 0.002 0.8497

Catchment size Simpson’s E 21 0.57 0.05 1.43 0.064 0.2459

Catchment size LCBD E 21 0.04 0.00 0.30 0.014 0.5888

Altitude Richness A 16 �181.98 39.84 19.66 0.551 0.0004

Altitude Simpson’s A 16 0.15 0.13 6.42 0.286 0.0221

Altitude LCBD A 16 �0.06 0.02 4.95 0.236 0.0408

Altitude Richness B 25 40.63 �2.29 0.14 0.006 0.7104

Altitude Simpson’s B 25 0.45 0.07 1.52 0.057 0.2297

Altitude LCBD B 25 0.08 �0.01 1.05 0.040 0.3153

Altitude Richness C 26 �60.69 16.75 38.97 0.600 <0.0001

Altitude Simpson’s C 26 0.49 0.06 0.72 0.027 0.4026

Altitude LCBD C 26 0.02 0.00 0.31 0.012 0.5849

Altitude Richness D 26 �35.24 13.06 2.09 0.074 0.1606

Altitude Simpson’s D 26 0.24 0.12 1.73 0.062 0.2002

Altitude LCBD D 26 0.08 �0.01 1.33 0.049 0.2594

Altitude Richness E 21 �64.29 18.91 6.32 0.231 0.0201

Altitude Simpson’s E 21 �1.21 0.41 12.97 0.382 0.0017

Altitude LCBD E 21 0.05 0.00 0.03 0.001 0.8738
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catchments, but also between different locations, seasons

and years (Er}os et al., 2013; Fernandes et al., 2013; G€othe,

Angeler & Sandin, 2013; Heino et al., 2015b,e; Tonkin

et al., 2016), and depending on preceding flow condi-

tions (Campbell et al., 2015). Indeed, we found clearly

context-dependent patterns in the factors regulating bio-

diversity in these five data sets. Streams are highly

stochastic systems, with strong fluctuations in environ-

mental conditions, particularly the flow regime (Resh

et al., 1988) with its associated substratum disturbance

(Tonkin & Death, 2012). This represents a key issue with

one-off sampling, as species that are present one year

due to favourable preceding conditions can be missing

the following year (Er}os et al., 2013; Andersson et al.,

2014). Thus, incorporating a temporal aspect in meta-

community research has the potential to increase predic-

tive power in our statistical models (Hill & Hawkins,

2014).

Effects of network position

Because the balance between local and regional processes

may differ between different locations in the river net-

work (Brown & Swan, 2010), we incorporated altitude

and catchment size as proxies for network position to rep-

resent regional controls of metacommunity structuring.

However, our results contrast with the suggestion of Finn

et al. (2011) that the positioning within a river network

(i.e. headwaters versus downstream) may override other

factors (including stressors) shaping stream biodiversity

(particularly beta diversity), such as climate, flow and

biogeography. The importance of neutral processes relat-

ing to river network structure has been clearly demon-

strated both empirically (Muneepeerakul et al., 2008) and

experimentally (Carrara et al., 2012). Yet, local variables

can potentially override regional processes on stream

metacommunities if there is substantial heterogeneity in

conditions across space and time (Canedo-Arguelles

et al., 2015), and if dispersal processes do not interfere

with species sorting (Heino et al., 2015a).

Regional environmental heterogeneity did, in fact,

promote data set beta diversity, but had no effect on

gamma diversity (see Figures S1 and S2). This reflects a

greater availability of niches and is consistent with some

previous findings (see Heino et al., 2015a). In addition to

habitat heterogeneity (e.g. Astorga et al., 2014), beta

diversity can be promoted through a suite of different

processes, including dispersal limitation (Shurin, Cotte-

nie & Hillebrand, 2009), productivity (Bini et al., 2014),

and spatial extent (Heino et al., 2015c). Although streams

are highly heterogeneous systems with strong differ-

ences even between different riffles, this heterogeneity in

both habitat and biota is likely to decrease downstream

(Heino, Louhi & Muotka, 2004; Finn et al., 2011). More-

over, as physical isolation is a key factor governing

metacommunity dynamics (Driscoll & Lindenmayer,

2009), we hypothesised (H1) that LCBD would decline

downstream (i.e. with increasing catchment size), and

alpha diversity would increase simultaneously. Substan-

tial evidence exists that although headwaters may have

lower alpha diversity (but see Besemer et al., 2013), they

contribute substantially to overall gamma diversity

through high site-to-site variation (i.e. beta diversity)

between streams (Finn et al., 2011). Recent work has

shown this high beta diversity in low-order streams to

be independent of altitude in the Rocky Mountains

(Harrington, Poff & Kondratieff, 2016). Yet, we found no

evidence to support this reasoning, with the only trend

for LCBD being an increase downstream (i.e. with

increasing catchment size) in one data set.

Catchment size was a poor predictor of biodiversity in

our study in general, but more regular and clearer links

were found with altitude. Where a link between the two

network location variables (catchment size and altitude)

Table 2 Results of forward selection of environmental variables on

the three macroinvertebrate community metrics. The variables col-

umn lists the variables selected for use in the variance partitioning

due to being significantly linked with the macroinvertebrate metric.

Catch, catchment/data set; d.f., degrees of freedom.

Metric Catch d.f. F P Variables

Richness A 1,16 9.40 0.006 Agriculture

Richness B 1,25 5.41 0.031 Sub_meso

Richness C 1,26 10.99 0.002 Artificial

Richness D 6,21 16.89 0.001 Sub_meso, Shrub, CPOM,

Terrestrial_plants,

Woody_debris, Sub_mega

Richness E 6,16 21.67 0.001 Sub_macro, Sub_gravel,

Forest, Sub_meso, CPOM,

Artificial

Simpsons A 3,14 10.98 0.002 Agriculture, CPOM,

Algae_cover

Simpsons B 1,25 11.89 0.004 Artificial

Simpsons C 1,26 9.43 0.026 Decaying_matter

Simpsons D 1,26 10.31 0.005 Artificial

Simpsons E 3,19 7.83 0.004 Sub_sand, Shading_stream,

Sub_macro

LCBD A 1,16 6.12 0.020 Sub_meso

LCBD B 2,24 5.98 0.012 Algae_cover,

Emergent_macrophytes

LCBD C 2,25 7.27 0.002 Sub_micro, Forest

LCBD D 3,24 12.01 0.002 Decaying_matter,

Terrestrial_plants,

Non_woody_debris

LCBD E 2,20 9.46 0.004 Shading_stream, Forest
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Fig. 3 Results of variance partitioning in each of the five data sets (A–E) on three macroinvertebrate community metrics: taxonomic rich-

ness, Simpson’s diversity (1 � D) and local contribution to beta diversity (LCBD). Catchment size, altitude and forward-selected environ-

mental variables were examined in separate partitions. Values displayed are the adjusted R2 and negative values are not shown. The
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are show as asterisks. *P < 0.05, **P < 0.01.
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and biodiversity was present, biodiversity always

increased. One possible reason for such weak linkages is

an uneven representation of sites along the full environ-

mental gradient in our data sets (i.e. small headwater

streams were underrepresented). However, while we had

few first order streams, 41 sites in total had catchment

sizes of less than 20 km2 (all data sets had at least four

sites smaller than this threshold). Thus, we believe an

adequate gradient was covered to observe patterns along

the river size gradient (catchment size ranged from 7 to

280 km2). At the heart of the river continuum concept is

the idea that environmental conditions change pre-

dictably downstream and lead to biodiversity peaking in

mid-order streams through greater environmental hetero-

geneity, with headwaters being relatively depauperate

(Vannote et al., 1980). Our results cannot refute this sug-

gestion, but it may be that external stressors are influ-

encing the context-dependent patterns in our system.

The strong increase in biodiversity variables with alti-

tude in many cases suggests more suitable environmen-

tal conditions are available for the biota at higher

altitudes and that increasing stressor effects emerge in

downstream sites. Nevertheless, given the well docu-

mented increase in beta diversity in isolated positions

within dendritic networks (Finn et al., 2011; Carrara

et al., 2012), we would expect to see greater contribu-

tions to beta diversity at smaller catchment sizes and

with increasing altitude.

Effects of environmental variables

As hypothesised (H2), the selected environmental vari-

ables, representing local drivers, captured a substantial

proportion of the variability in biodiversity in our study,

more than either catchment size or altitude. Local habi-

tat conditions have been clearly demonstrated as a key

factor determining stream invertebrate communities in

pristine streams (Heino et al., 2012; Tonkin, 2014), and

the importance of land use in shaping stream communi-

ties is well understood (Harding et al., 1998; Allan,

2004). Moreover, the ‘local’ component regulating stream

community composition may also incorporate associa-

tions between taxa (i.e. biotic interactions) (Johnson &

Hering, 2010). Given that LCBD essentially represents

the uniqueness of a community in relation to other com-

munities within a metacommunity (Legendre & De

C�aceres, 2013), it appears that niche-related processes

are operating to govern biodiversity in our study

regions.

The weaker link between the environment and LCBD

compared to that between the environment and rich-

ness may have emerged from impacted species pools

in this region, through a long history of anthropogenic

modification. G€othe et al. (2015) also recently found no

evidence of higher beta diversity in headwater streams

in a degraded landscape. Recent work has highlighted

the importance of intact species pools for restoration to

succeed (Sundermann, Stoll & Haase, 2011; Tonkin

et al., 2014), but also that anthropogenic degradation

can alter associations between different species in

streams (Larsen & Ormerod, 2014; Tonkin et al., 2015a).

In degraded environments, some of the key factors pro-

moting beta diversity in headwaters, such as their abil-

ity to harbour more habitat specialists (Meyer et al.,

2007), may not be operating. While environmental con-

trol may typically be greater in headwaters (Brown &

Swan, 2010; G€othe et al., 2013), their communities, as in

other environments, are governed by an interplay

between local and regional species pool-related factors

(Heino, Muotka & Paavola, 2003; Gr€onroos & Heino,

2012). These local-regional interactions will, in turn, be

controlled by the characteristics of regional species

pools. Furthermore, a potentially greater amount of

variation might have been captured if we had incorpo-

rated chemical stressors in our analysis (e.g. Leps et al.,

2015), but consistent data for these sites was

unfortunately unavailable. We omitted highly polluted

sites to reduce the influence of pollution on our

results, but despite the lack of such variables, we were

able to explain a sizable portion of variation in our

response variables using the measured environmental

variables.

The poorer prediction of LCBD compared to the

other metrics may also simply reflect the fact that it is

a difficult metric to predict, and the evidence is cur-

rently scarce as this metric is relatively new (but see

Lopes et al., 2014; Silva & Hern�andez, 2014). However,

it is noteworthy that a substantial proportion of LCBD

could be predicted by local environment alone, particu-

larly for the degraded nature of this region. Thus,

regions with greater chemical and physical heterogene-

ity might be expected to produce even clearer results.

While other factors, such as the preceding flow regime,

water quality and the effects of fish predation may

have also contributed to the explanation of biodiversity,

we believe we incorporated the most important struc-

turing environmental variables. Land use, for instance,

is closely tied with many water quality variables (Var-

anka & Luoto, 2012). Moreover, it remains that stream

metacommunities can be notoriously difficult to predict.

This has been demonstrated in a recent global study

that showed weak and variable patterns in the factors
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shaping beta diversity and assemblage structure (Heino

et al., 2015b).

One of the key findings to emerge through consider-

ing river systems from a network perspective is the

knowledge that headwaters are critical biodiversity

reservoirs (Meyer et al., 2007; Finn et al., 2011). However,

we found no evidence to support this in our study, with

no decline in LCBD downstream. We instead found a

much stronger role of local habitat and catchment land-

use variables than catchment size and altitude (proxies

of network position). In these anthropogenically altered

catchments, local habitat was a reasonable descriptor of

biodiversity compared to other factors governing meta-

community structure, such as the role of dispersal and

positioning within the stream network. This is an inter-

esting finding, particularly from an applied standpoint,

indicating that unique assemblages emerged out of envi-

ronmental control rather than physical isolation (cf. dis-

persal limitation).

We found highly context-dependent patterns between

different data sets in our study. Context dependency is a

clear challenge for the study of metacommunities, mak-

ing extrapolation of findings beyond individual studies

difficult and thus posing a key obstacle to overcome for

the development of general ecological theories. This is

not a new phenomenon, as Lawton (1999, p. 178) stated

that: ‘. . .community ecology is a mess, with so much

contingency that useful generalisations are hard to find’.

This level of contingency is even more challenging at

the even more complex level of metacommunities.

Therefore, we urge researchers to continue disentangling

the primary drivers of this variability between metacom-

munities through studies on replicate, rather than single,

metacommunities.
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